Maximal characterisation of local Hardy spaces on locally doubling manifolds

نویسندگان

چکیده

Abstract We prove a radial maximal function characterisation of the local atomic Hardy space $${{\mathfrak {h}}}^1(M)$$ h 1 ( M ) on Riemannian manifold M with positive injectivity radius and Ricci curvature bounded from below. As consequence, we show that an integrable belongs to if only either its heat or Poisson is integrable. A key ingredient decomposition Hölder cut-offs in terms appropriate class approximations identity, which obtain arbitrary Ahlfors-regular metric measure spaces generalises previous result A. Uchiyama.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Radial Maximal Function Characterizations for Hardy Spaces on RD-spaces

An RD-space X is a space of homogeneous type in the sense of Coifman and Weiss with the additional property that a reverse doubling property holds. The authors prove that for a space of homogeneous type X having “dimension” n, there exists a p0 ∈ (n/(n+ 1), 1) such that for certain classes of distributions, the L(X ) quasi-norms of their radial maximal functions and grand maximal functions are ...

متن کامل

Hardy-type spaces on certain noncompact manifolds and applications

In this paper we consider a complete connected noncompact Riemannian manifold M with Ricci curvature bounded from below, positive injectivity radius and spectral gap b. We introduce a sequence X(M), X(M), . . . of new Hardy spaces on M , the sequence Y (M), Y (M), . . . of their dual spaces, and show that these spaces may be used to obtain endpoint estimates for spectral multipliers associated ...

متن کامل

Radial maximal function characterizations of Hardy spaces on RD-spaces and their applications

Let X be an RD-space with μ(X ) = ∞, which means that X is a space of homogeneous type in the sense of Coifman and Weiss and its measure has the reverse doubling property. In this paper, we characterize the atomic Hardy spaces H at(X ) of Coifman and Weiss for p ∈ (n/(n + 1), 1] via the radial maximal function, where n is the “dimension” of X , and the range of index p is the best possible. Thi...

متن کامل

Local Riesz transforms characterization of local Hardy spaces

For 0 < p ≤ 1, let hp(Rn) denote the local Hardy space. Let θ̂ be a smooth, compactly supported function, which is identically one in a neighborhood of the origin. For k = 1, . . . , n, let (rkf )̂ (ξ) = −i(1 − θ̂(ξ))ξk/|ξ|f̂(ξ) be the local Riesz transform and define (r0f )̂ (ξ) = (1 − θ̂(ξ))f̂(ξ). Let Ψ be a fixed Schwartz function with ∫ Ψ dx = 1, letM > 0 be an integer and suppose (n− 1)/(n+M − 1)...

متن کامل

Boundedness of Linear Operators via Atoms on Hardy Spaces with Non-doubling Measures

Let μ be a non-negative Radon measure on R which only satisfies the polynomial growth condition. Let Y be a Banach space and H(μ) the Hardy space of Tolsa. In this paper, the authors prove that a linear operator T is bounded from H(μ) to Y if and only if T maps all (p, γ)-atomic blocks into uniformly bounded elements of Y; moreover, the authors prove that for a sublinear operator T bounded from...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Zeitschrift

سال: 2021

ISSN: ['1432-1823', '0025-5874']

DOI: https://doi.org/10.1007/s00209-021-02856-x